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Monte Carlo simulations of branched polymer surfaces without bending elasticity

Hiroshi Koibuchi,* Atsusi Nidaira, Takumi Morita, and Komei Suzuki
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We study a model of elastic surfaces that was first constructed by Baillieet al. for an interpolation between
the models of fluid and crystalline membranes. The Hamiltonian of the model is a linear combination of the
Gaussian energy and a squared scalar curvature energy. These energy terms are discretized on dynamically
triangulated surfaces that are allowed to self-intersect. We confirm that the model has not only crumpled phases
but also a branched polymer phase, and find that the model undergoes a first-order phase transition between the
branched polymer phase and one of the crumpled phases. We find also that the model undergoes a second-~or
higher-! order phase transition between the branched polymer phase and another crumpled phase.
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I. INTRODUCTION

Real membranes, such as bilayer lipid membranes, s
common properties with phantom ones such as
Polyakov-Kleinert string@1,2#; both of them have surfac
tension and bending elasticity@3–6#. Hence, the real mem
branes@7–12# and the phantom ones@13–21# have been in-
vestigated numerically on triangulated surfaces by m
groups with techniques similar to each other, although
real surfaces are self-avoiding, while the phantom surfa
are not. The phantom surface model has a crumpled pha
the bending rigidityb→0 and a smooth phase atb→`.
From the numerical studies done so far, it has been c
firmed that there is a second-order phase transition of sh
fluctuation between the smooth and the crumpled phase
the model of crystalline surfaces@7,8,13–15# where the bond
connectivity is fixed and the lateral diffusion is absent. It w
recently reported@21# that there is an expected second-ord
phase transition@22–25# also in the model of fluid surface
where the vertices diffuse freely over the surface.

Baillie et al. @26–29# studied a fluid surface model for a
interpolation between the models of the crystalline and
fluid surfaces. The Hamiltonian of the model contains
intrinsic scalar curvature term and the Polyakov-Kleinert~or
Helfrich! energy terms. In the studies of Baillieet al., it was
found that the model has a branched polymer phase at in
mediate values of interpolating parameterm(Þ0,̀ ) when
b50. Thus, we recognize that whenb50 the model belongs
to the crumpled phase atm→0,̀ , while it belongs to the
branched polymer phase at intermediate values ofm. How-
ever, phase transitions between these phases remained
studied.

In this paper, we study by Monte Carlo~MC! the phase
transitions of the model first constructed by Baillieet al. for
an interpolation of the crystalline and the fluid surfaces b
of which can be viewed as discrete models of the Polyak
Kleinert string.

We will find that there is a first-order phase transition
shape transformation between the branched polymer p
and one of the crumpled phases. Moreover, we find that
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model undergoes a second-~or higher-! order phase transi
tion characterized by the divergence of the specific heat
the intrinsic scalar curvature atN→`. We expect that the
model of Baillieet al.can be applied to studies on models
shape transformations of real membranes.

II. THE MODEL

A. Statistical mechanical model

A sphere inR3 is discretized with piecewise linear tri
angles. The spherical topology is assumed for neglecting
boundary of surfaces. We are not aimed at constructin
model of micellar aggregates of spherical topology in aq
ous solutions. Each vertex has the three dimensional deg
of freedom represented byXi(PR3). Every vertex is con-
nected to its neighboring vertices by bonds, which are
edges of triangles.

The Gaussian energyS1 and the scalar curvature energ
S3 are defined by

S15(
( i j )

~Xi2Xj !
2, S35(

i
~62s i !

2, ~1!

where( ( i j ) is the sum over all bonds (i j ), ands i in S3 is the
total number of bonds emanating from the vertexi and is
called the coordination number.

The partition function is defined by

Z5(T
E )

i 51

N21

dXiexp@2S~X,T !#, ~2!

S~X,T !5aS11mS3 , a51,

where(T denotes the sum over all possible triangulationsT.
The Nth vertex is fixed to remove the translational ze
mode of the surface; alternatively, the center of the surf
can be fixed. TheS(X,T ) shows that the HamiltonianS
explicitly depends on the variablesX andT. The coefficienta
is called the surface tension, and it is assumed to bea51.
The symbolm is the interpolating parameter. The partitio
function depends onm: Z5Z(m). The surfaces are allowe
to self-intersect.
©2003 The American Physical Society04-1
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It should be noted that our choicea51 represents no
only a redefinition ofm asm/a but also a choice of the uni
of length asAkT/a51. Hence, the unit ofm becomeskT/a.
We can choose the unit of length asAkT/a51, because the
partition function of Eq.~2! is scale invariant. The units wil
be explicitly mentioned if necessary.

The specific heat is defined by

CS3
5~m2/N!]2logZ/]m2,

and is practically calculated by using

CS3
5

m2

N
^~S32^S3&!2&, ~3!

hence it corresponds to the fluctuation ofS3.
A phase transition is called thenth order if the derivatives

below the (n21)th order of the free energyF52 logZ(m)
are continuous and a derivative of thenth order is discon-
tinuous. It should also be noted that a singular functi
which is a function divergent somewhere in the parame
space, is a discontinuous function.

B. Squared scalar curvatureS3

Here we comment onS3 in Eq. ~1!. If the Gaussian cur-
vatureK is integrated over a compact surface, the integrat
of K becomes a constant that depends only on the genu
the surface. For this reason,K is independent of the shape o
membranes.

However, the integration ofK2 can play a nontrivial role
in the shape transformation of membranes. In fact, the i
gration of K2 has different values on surfaces, which a
different in shape, even though the surfaces have the s
genus.

It should be noted thatS3 in Eq. ~1! is considered as a
discretization ofK2. To see this, let us define the defic
angled i by

d i52p2(
j

f j ~4!

at the vertexi, where f j denote the vertex angles of th
triangles connected to the vertexi. This d i is considered as a
discretization of the Gaussian curvatureK ~or the scalar cur-
vature R). In fact, it is well known that the relation( id i
52p(22t) is obtained by summingd i over a surface of
genus t. This is considered as a discrete version of
Gauss-Bonnet theorem*d2xAgK52p(22t) for the com-
pact surfaces of genust.

By proceeding this discretization further, we can also
write the right-hand side of Eq.~4! as D i562s i . This D i
can be interpreted as a discretization ofK upto a multiplica-
tive constant because of the relation( id i52p( iD i . Thus,
we obtainS3 in Eq. ~1! from *d2xAgK2.

C. Monte Carlo technique

Spherical surfaces inR3 are discretized with the Vorono
triangulation@30#, and they are used as the starting config
01180
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rations of MC. The radii of the initial spheres are fixed
that the sum of the resulting squared length of bonds
vertex, i.e., the Gaussian energy per vertex( i l i

2/N becomes
almost equal to the expected value3

2 . This value is obtained
by the scale invariance of the partition functionZ of Eq. ~2!.
In fact, by letting Z(a)ª(T*) i 51

N21dXiexp@2(aS11mS3)#,
we have^S1&52](logZ)/]a(a51). SinceZ(a) is scale in-
variant, replacingX by a21X in Z(a) we obtain Z(a)
5a23(N21)(T*) i 51

N21dXiexp@2(aS11mS3)#, and therefore
we obtain^S1&53(N21)/2. Thus, we havêS1&/N53(N
21)/2N. 3

2 .
The basic MC processes are shown in Fig. 1. The p

tions X of the vertices and the triangulationT are updated
using the canonical MC technique. Each position and n
work link is updated sequentially, with the change in conn
tivity following the fluid membrane algorithm developed b
Baumgartner and Ho@9,10# and at the same time by Cattera
@19#. X is updated so thatX85X1dX, where the small
changedX is made at random in a small sphere centered
X. The radiusdr of the small sphere is chosen to mainta
the rate of acceptancer X for X update to be 0.5<r X<0.55.
The dr is defined by using a constant numbere adjusted by
hand as an input parameter so thatdr 5e^ l &, where^ l & is the
mean value of bond length computed at every 250 sweep
should be noted thatdr becomes almost fixed because^ l & is
almost constant in the equilibrium configurations. Contra
ingly, the rate of acceptancer T for the flip of bonds is un-
controllable. The value ofr T is fixed automatically depend
ing on the interpolating parameterm in Eq. ~2!; it varies with
the value ofS3 and will be discussed in the following sec
tion.

One MC sweep consists ofN trials for X update andN
trials for T update. Two consecutiveN trials for X update and
T update make one MC sweep.

No restrictions are imposed on the trial updates, exc
the minimum length of bonds, which corresponds to a h
core between the vertices at two ends of the bonds; whe
all the vertices that have no common bond are able to occ
even an identical position. Practically, the trial updates foX
and T in Fig. 1 are made so that the resulting lengths
bonds should not be smaller than 1026^ l &, where^ l & is the
mean value of bond length. The maximum number is

FIG. 1. Basic MC processes for~a! update ofX, a small change
of the position of a vertex, and~b! update ofT, a flip of a bond.
Cubes represent vertices.
4-2
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FIG. 2. Snapshots of surfaces ofN51000 in the equilibrium configurations at~a! m50.8, ~b! m51.5, ~c! m52.3, ~d! m53.5, ~e! m
54.8, and~f! m54.9. Small spheres on the surfaces are the vertices.
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imposed on the coordination number, while the minimu
coordination number should be obviously 3.

It should be noted that the mean value of bond length
the equilibrium configurations is a constant in the unit
a/kT, which is assumed to bea/kT51, as mentioned in
Sec. II A. Thus, the minimum bond length that is the rad
of the hard core becomes a constant. According to our ex
riences, the results of MC calculations are independent
minimum bond length if it is small enough.

III. RESULTS

A. Snapshots ofNÄ1000 surfaces

Figures 2~a!–2~f! are the snapshots of surfaces obtained
m50.8;4.9, whereN51000. They were obtained afte
enough MC sweeps for the equilibrations started from
sphere as the starting configuration. These figures sug
that the membrane belongs to the branched polymer pha
2.3<m<4.8 and belongs to the crumpled phase both am
,2.3 and atm.4.9 whenN51000.

B. Results ofNÄ340 surfaces

Figures 3~a! and 3~b! show the rate of acceptancer T for
the bond flip and the energyS3 per vertex, respectively.r T is
uncontrollable in MC ifS3 is not contained in the Hamil
tonian. However, if the Hamiltonian containsS3 one can
control r T in MC, as shown in Fig. 3~a!. The data denoted by
the open~solid! circles are obtained by increasing~decreas-
ing! the value ofm in MC started atm50.3 (m56.7). The
starting configuration at everym is the final one obtained a
the previousm. 23106 sweeps are discarded for the the
malization at everym, and S3 is sampled at every 500
sweeps in the following 1.83107 sweeps. We can see a kin
of hysteresis atm.4 in Figs. 3~a! and 3~b!.
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Figure 4~a! shows the specific heatCS3
. We find that there

are not only two peaks atm.0.4 and atm.2.3 but also a
gap atm.4 in CS3

. Since the peak atm.0.4 is very small,

we will concentrate only on the peak atm.2.3 and the gap
at m.4.

Figure 4~b! shows the mean square sizeX2 defined by

X25
1

N (
i

~Xi2X̄!2, X̄5
1

N (
i

Xi . ~5!

We find from Fig. 4~b! that X2 significantly depends onm
and abruptly changes atm.4, whereCS3

has the gap, as
shown in Fig. 4~a!. This suggests that there is a stron

FIG. 3. ~a! The rate of acceptancer T for bond flips and~b! the
squared scalar curvature per vertexS3 /N. The open circles (s)
denote the data obtained by increasing the value ofm in MC started
at m50.3, while the solid circles (d) denote the data obtained b
decreasing the value ofm in MC started atm56.7. The starting
configuration at eachm was the final one obtained at the previo
m. The unit ofm is kT/a.
4-3
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~maybe the first order! phase transition between the branch
polymer phase and the crumpled phase emerged atm>4 for
N5340.

We easily find from Fig. 4~b! that the crumpled phas
emerges both atm→0 and atm→`. Hence, the model con
tains two phase boundaries; one of which separates
branched polymer phase and the crumpled phase atm→`,
and the other separates the branched polymer phase an
crumpled phase atm→0. The dashed lines drawn vertical
in Fig. 4~b! denotes these phase boundaries. We can see
peak ofCS3

and the gap of it just at these two phase bou
aries, respectively, in Fig. 4~a!.

Additional 63108 MC sweeps were done atm57 by
starting with the final configuration corresponding to t
symbol (s) at m57 plotted in both Figs. 3 and 4. Howeve
the obtained value ofX2 remains unchanged. In the sam
way, 63108 sweeps were done atm56.7 by starting with
the sphere of radiusR0 chosen, so thatS1. 3

2 N. We find in
this case that the obtained surface remains crumpled,
that the value ofX2 remains a constant value, which is ide
tical with that (d) at m56.7 in Fig. 4~b!. These indicate tha
the surface can hardly shrink even in the crumpled phase
is once stretched, and also that the surface remains crum
in the crumpled phase if it is once crumpled.

C. First-order phase transition

It was suggested in Figs. 3 and 4 that the phase trans
between the branched polymer and one of the crump
phases is of the first order. In this subsection, we will sh
more clearly and confirm this.

Figure 5~a! shows thatX2 discontinuously reduces toX2

.0.5 atm5mc(N) whenm increases.X2 at m,mc(N) de-
pends onN, and becomes larger and larger whenN increases.
While at m.mc(N), X2 seems independent ofN and be-
comes constant value:X2.0.5. This suggests that the valu
of Hausdorff dimensionH defined by

X2;N2/H ~6!

becomes very large atm.mc(N), while it remains small at
m,mc(N). The critical pointsmc(N) of the phase transition

FIG. 4. ~a! The specific heatCS3
and ~b! the mean square siz

X2. The number of vertices isN5340. The units ofCS3
, X2, andm

are (kT/a)2, kT/a, andkT/a, respectively.
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are mc(340).4.3, mc(600).4.4, mc(1000<N<1500)
54.8;5, and mc(N52500).5.5, some of which can be
viewed in Fig. 5~a!.

Figure 5~b! showsX2 just above and belowmc(N) vs N in
log-log scale. TheseX2 are mean values obtained from th
data points obtained at the vicinity ofmc(N) for N
5340, 600, 1000, 1500, 2500. The values ofX2 obtained
just below mc(N) is denoted bybranched polymerin the
figure, while those just abovemc(N) by crumpled.

Both of the straight lines in Fig. 5~b! are obtained by
fitting the data to Eq.~6!. Thus, we have

Hb.p.51.9360.06, Hcru515.4360.28, ~7!

whereHb.p. andHcru correspond toH at the branched poly-
mer phase andH at the crumpled phase, respectively, at t
vicinity of the critical point.

The number of MC sweeps done at the vicinity of t
critical points are 63108 for N5340, 600, and 0.53109

;13109 for N51000, 1500, 2500. The number of therma
ization sweeps done in the branched polymer phase i
3107 for all values ofN, while it is quite large (53108, for
example! at close vicinity of the critical points. After the
thermalization, time series$S3% are sampled at every 50
sweeps, i.e., the number of sampling sweeps is 500.
starting configuration of MC at eachm is the sphere of radius
R(N) chosen so thatS1 /N.3/2.

It should be noted that the results are almost independ
of the sampling sweeps. The sampling sweeps of 500 is v
smaller than a correlation time, which can be estimated
the minimum number of sweeps so that the autocorrela
coefficient

A~X2!5

(
i

X2~t i 11!X2~t i !

(
i

@X2~t i !#
2

~t i 115t i1n3500, n51,2, . . .!

FIG. 5. ~a! X2 vs m at the vicinity of critical pointsmc(N) of the
first-order phase transition.~b! Log-log plots of mean values ofX2

vs N at m,mc(N) ~branched polymer! and at m.mc(N)
~crumpled!. The unit of X2 is kT/a, which is identical with that
of m.
4-4
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becomesA(X2)<0.1. Nevertheless, we can see that the M
results are almost independent of the sampling swe
@15,20,21#.

TheX2 plotted in Fig. 5~a!, which were obtained from the
surfaces ofN51000, 2500, are fluctuated at close vicinity
the critical points. It appears that theX2 is not well defined
there. This ill definedness will be seen also inS3 and in the
specific heatCS3

.

This ill definedness ofX2 seems due to the noncompa
nature of the phase spaceR3 for the dynamical variableX. If
the variablesX are localized once at a stretched on
dimensional region inR3 to form a branched polymer sur
face, the surface can hardly shrink to a crumpled one,
cause all the variablesX located at the stretched one
dimensional region cannot simultaneously move to a sm
region in R3 within finite MC sweeps. On the contrary, a
most all the surfaces in the branched polymer phase
eventually stretch out and change into branched polymer
faces after many thermalization sweeps, even when the
faces are crumpled at the beginning.

Figure 6~a! shows thatS3 /N, which is the internal energy
per one vertex, has a gap at the critical pointsmc(N) when
N>600. This also suggests that the branched polymer ph
and the crumpled phase are separated by a first-order p
transition. The continuous behavior seen inS3 of N5340
seems due to the size effect, that is, the size of the surfa
too small for low-frequency modes~or excitations! in the
fluctuations ofS3. It also appears that theS3 is not well
defined at the critical points, asX2 is not, whenN>1000.

A scaling property of the gap ofS3 at N→` is unclear in
Fig. 6~a!, becauseS3 are divided byN in Fig. 6~a!. Hence,
we showS3(mc) (s) and DS3 (d) vs N in Fig. 6~b! in
log-log scale, whereS3(mc) is defined by usingS3 just be-
low and above mc(N), so that S3(mc)5 1

2 @S3(m.mc)
1S3(m,mc)#, andDS3 is the gap ofS3 at mc(N) defined
by DS35S3(m.mc)2S3(m,mc).

We consider that the phase transition is characterized
by a discontinuity ofS3, because we can expect thatDS3
Þ0 atN→` from Fig. 6~b!. It should be noted that it is very
hard to obtainS3 precisely near the critical point becauseS3
is not well defined at the critical point. This is the reas

FIG. 6. ~a! S3 /N vs m at the vicinity of the first-order phas
transition and~b! S3(mc) (s) and the gapDS3 (d) vs N in log-
log scale, whereS3(mc) andDS3 are defined byS3(mc)5

1
2 @S3(m

.mc1S3(m,mc)# and DS35S3(m.mc)2S3(m,mc), respec-
tively. The unit ofm is kT/a.
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why the obtained dataDS3 considerably fluctuate in Fig
6~b!.

D. Continuous phase transition

It was suggested in Fig. 4~a! that the model undergoes
second-order phase transition atm.2.3. Hence, we will
study this phase transition further using surfaces of largeN
thanN5340.

Figure 7~a! shows the specific heatsCS3
vs m. The peak

valuesCS3

max(N) of the specific heat againstN are plotted in

Fig. 7~b! in log-log scale to see whetherCS3

max(N) is divergent

or not, where 200<N<4500.
The number of MC sweeps done at the vicinity of t

peaks ofCS3
are 33108 for N5600, 1000, 1500, and 9

3108 for N52500, 4500. The thermalization sweeps done
everym are 13107 for N5600, 1000, 1500 and 43107 for
N52500, 4500. The sampling sweeps and the starting c
figurations of MC are the same as those in the MC for
first-order phase transition presented in Sec. III C.

If we consider thatCS3

max(N) scales according to

CS3

max;Ns, ~8!

when N>1500, we find that the fluctuation ofS3 is diver-
gent atN→`, wheres is a critical exponent of the phas
transition. This suggests that the model undergoes a sec
order phase transition accompanied by the fluctuation ofS3.
If we think that the largest three data ofCS3

max shown in Fig.

7~b! can be fitted to Eq.~8!, we have

s50.087960.0087. ~9!

The solid line in Fig. 7~b! is drawn by using the result in Eq
~9!. This indicates that the phase transition is very weak,
it is a second-order one.

Hence, it is possible to consider that there is a fixed po
of the b function of the model at finitem, where the corre-
lation length is expected to be divergent, so that all phys
quantities become independent of the discrete lattice st
ture of the model.

FIG. 7. ~a! CS3
vs m and~b! the peaksCS3

max(N) vs N in log-log
scale. The units ofCS3

andm are (kT/a)2 andkT/a, respectively.
4-5
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However, it is also possible thatCS3

max saturates atN

.4500, which are larger than those plotted in Fig. 7~b!.
Therefore, it is not conclusive that the phase transition is
second order.

Nevertheless, the existence of the peak inCS3
suggests

that the model undergoes a phase transition separating
branched polymer phase and the crumpled phase atm→0. It
should be noted that this phase transition separates als
ternally random and flat configurations, which are charac
ized byS3Þ0 andS350, respectively.

IV. SUMMARY AND CONCLUSION

We studied the phase transitions in the model of tw
dimensional surface that was first constructed by Bai
et al. for an interpolation between the model of fluid mem
branes and the model of crystalline membranes. The Ha
tonian of the model is given byS5S11mS3, whereS1 is the
Gaussian energy andS3 is the intrinsic squared scalar curv
ture energy, andm is the parameter that interpolates the flu
and the crystalline models of membranes. The dynam
variables of the model are the positions of verticesX and the
triangulationsT. The results are summarized as follows:

The shape of surfaces becomes tubular~i.e., branched
polymer! at the intermediate values ofm. The model under-
m
rg

r-

.

01180
f

the
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e
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al

goes a first-order phase transition separating the branc
polymer phase and the crumpled phase atm→`. Moreover,
the model undergoes a second-~or higher-! order phase tran-
sition between the branched polymer phase and the crum
phase atm→0.

If the phase transition between the branched polym
phase and the crumpled phase atm→0 is second order, it is
characterized by the divergence of the specific heatCS3

at

the critical pointmc(.2.3). X2 continuously changes at thi
critical point, whether the order of the phase transition
second or higher. The surfaces are also considered to b
ternally flat atm.mc where the coordination numberss i at
almost all vertices become 6, while the surfaces become
ternally at random atm,mc where thes i are not always 6.

The first-order phase transition is characterized by the
continuity of X2, hence by the Hausdorff dimensionH; H
.2 in the branched polymer phase just belowmc

1st, while
H.15 in the crumpled phase atm.mc

1st. This phase transi-
tion is also characterized by a gap inS3 at the critical point
mc

1st.
It would be interesting to study the model defined by t

Hamiltonian S5S11bS21mS3, where S2 is the extrinsic
curvature~i.e., the bending energy!, because this model con
tains the smooth phase where the surface becomes smo
ri,

i,

cl.

A

s.
@1# A.M. Polyakov, Nucl. Phys. B268, 406 ~1986!.
@2# H. Kleinert, Phys. Lett. B174, 335 ~1986!.
@3# J.F. Wheater, J. Phys. A27, 3323~1994!.
@4# F. David, inTwo Dimensional Quantum Gravity and Rando

Surfaces, edited by D. Nelson, T. Piran, and S. Weinbe
~World Scientific, Singapore, 1989!, Vol. 8, p. 87.

@5# D. Sornette and N. Ostrowsky, inMicelles, Membranes, Mi-
croemulsions, and Monolayers, edited by W.M. Gelbart, A.
Ben-Shaul, and D. Roux~Springer-Verlag, New York, 1994!.

@6# A. Ben-Shaul and W.M. Gelbart, inMicelles, Membranes, Mi-
croemulsions, and Monolayers, 1, edited by W.M. Gelbart, A.
Ben-Shaul, and D. Roux~Springer-Verlag, New York, 1994!.

@7# Y. Kantor and D.R. Nelson, Phys. Rev. A36, 4020~1987!.
@8# Y. Kantor, in Statistical Mechanics of Membranes and Su

faces, edited by D. Nelson, T. Piran, and S. Weinberg~World
Scientific, Singapore, 1989!, Vol. 5, p. 115.

@9# A. Baumgartner and J.S. Ho, Phys. Rev. A41, 5747~1990!.
@10# J.S. Ho and A. Baumgartner, Europhys. Lett.12, 295 ~1990!.
@11# G. Gompper and D.M. Kroll, Phys. Rev. E51, 514 ~1995!.
@12# D.H. Boal, U. Seifert, and A. Zilker, Phys. Rev. Lett.69, 3405

~1992!.
@13# J.F. Wheater, Nucl. Phys. B458, 671 ~1996!.
@14# M. Bowick, S. Catterall, M. Falcioni, G. Thorleifsson, and K

Anagnostopoulos, J. Phys. I6, 1321 ~1996!; Nucl. Phys. B,
Proc. Suppl.47A, 838 ~1996!; 53A, 746 ~1997!.

@15# H. Koibuchi and M. Yamada, Int. J. Mod. Phys. C11, 1509
~2000!.
@16# M. Bowick, P. Coddington, L. Han, G. Harris, and E. Marina
Nucl. Phys. B, Proc. Suppl.30A, 795 ~1993!; Nucl. Phys. B
394, 791 ~1993!.

@17# K. Anagnostopoulos, M. Bowick, P. Gottington, M. Falcion
L. Han, G. Harris, and E. Marinari, Phys. Lett. B317, 102
~1993!.

@18# J. Ambjorn, A. Irback, J. Jurkiewicz, and B. Petersson, Nu
Phys. B393, 571 ~1993!.

@19# S.M. Catterall, Phys. Lett. B220, 253 ~1989!.
@20# H. Koibuchi and M. Yamada, Int. J. Mod. Phys. C11~3!, 441

~2000!.
@21# H. Koibuchi, Phys. Lett. A300, 586 ~2002!.
@22# F. David and E. Guitter, Europhys. Lett.5, 709 ~1988!.
@23# M.E.S. Borelli, H. Kleinert, and A.M.J. Schakel, Phys. Lett.

267, 201 ~2000!.
@24# M.E.S. Borelli and H. Kleinert, Europhys. Lett.53, 551

~2001!.
@25# H. Kleinert, Eur. Phys. J. B9, 651 ~1999!.
@26# C.F. Baillie and D.A. Johnston, Phys. Rev. D48, 5025~1993!;

49, 4139~1994!.
@27# C.F. Baillie, D. Espriu, and D.A. Johnston, Phys. Lett. B305,

109 ~1993!.
@28# C.F. Baillie, A. Irback, W. Janke, and D.A. Johnston, Phy

Lett. B 325, 45 ~1994!.
@29# N. Ferguson and J.F. Wheater, Phys. Lett. B319, 104 ~1993!.
@30# R. Friedberg and H.C. Ren, Nucl. Phys. B235 @FS11#, 310

~1984!.
4-6


