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Monte Carlo simulations of branched polymer surfaces without bending elasticity
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We study a model of elastic surfaces that was first constructed by Beatillié for an interpolation between
the models of fluid and crystalline membranes. The Hamiltonian of the model is a linear combination of the
Gaussian energy and a squared scalar curvature energy. These energy terms are discretized on dynamically
triangulated surfaces that are allowed to self-intersect. We confirm that the model has not only crumpled phases
but also a branched polymer phase, and find that the model undergoes a first-order phase transition between the
branched polymer phase and one of the crumpled phases. We find also that the model undergoes @second-
highery order phase transition between the branched polymer phase and another crumpled phase.
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[. INTRODUCTION model undergoes a secon@r higher) order phase transi-
tion characterized by the divergence of the specific heat for
Real membranes, such as bilayer lipid membranes, shatbe intrinsic scalar curvature &—o. We expect that the
common properties with phantom ones such as thenodel of Baillieet al.can be applied to studies on models of
Polyakov-Kleinert string[1,2]; both of them have surface shape transformations of real membranes.
tension and bending elasticif3—6]. Hence, the real mem-

branes7-12] and the phantom on¢43-21] have been in- Il. THE MODEL
vestigated numerically on triangulated surfaces by many o _
groups with techniques similar to each other, although the A. Statistical mechanical model

real surfaces are self-avoiding, while the phantom surfaces A sphere inR? is discretized with piecewise linear tri-

are not. The phantom surface model has a crumpled phase gigles. The spherical topology is assumed for neglecting the
the bending rigidityb—0 and a smooth phase &t-=.  poundary of surfaces. We are not aimed at constructing a
From the numerical studies done so far, it has been COMmodel of micellar aggregates of Spherica] t0p0|ogy in aque-
firmed that there is a second-order phase transition of shapgys solutions. Each vertex has the three dimensional degrees
fluctuation between the smooth and the crumpled phases igf freedom represented bY;( e R3). Every vertex is con-
the model of crystalline surfac¢g,8,13—13 where the bond nected to its neighboring vertices by bonds, which are the
connectivity is fixed and the lateral diffusion is absent. It wasedges of triangles.
recently reportetﬂZl] that there is an eXpeCted second-order The Gaussian ener@l and the scalar curvature energy
phase transitioi22—-23 also in the model of fluid surfaces s, are defined by
where the vertices diffuse freely over the surface.

Baillie et al.[26—29 studied a fluid surface model for an ) )
interpolation between the models of the crystalline and the Sl:(izj) (Xi=X)%, 3322 (6—0y)%, @
fluid surfaces. The Hamiltonian of the model contains an
intrinsic scalar curvature term and.the Polyglfov—K!eu(ert whereX ;) is the sum over all bgndsr'.j(), ando; in Sz is th_e
Helfrich) energy terms. In the studies of Baille al, it was  (5tal number of bonds emanating from the verteand is
found that the model has a branched polymer phase at intefzied the coordination number.

mediate values of interpolating parameje¢+ 0,°) when The partition function is defined by
b=0. Thus, we recognize that whér- 0 the model belongs

to the crumpled phase at— 0., while it belongs to the N-1
branched polymer phase at intermediate valueg.oHow- z:E J H dXexd —S(X,7)], 2)
ever, phase transitions between these phases remained to be T i=1
studied.
In this paper, we study by Monte Car(C) the phase S(X,T)=aS;+uS;, a=1,

transitions of the model first constructed by Bailiieal. for
an interpolation of the crystalline and the fluid surfaces bothwhereX= denotes the sum over all possible triangulati@ns
of which can be viewed as discrete models of the PolyakovThe Nth vertex is fixed to remove the translational zero
Kleinert string. mode of the surface; alternatively, the center of the surface
We will find that there is a first-order phase transition ofcan be fixed. TheS(X,7) shows that the Hamiltoniais
shape transformation between the branched polymer phasxplicitly depends on the variabl&sand7. The coefficiena
and one of the crumpled phases. Moreover, we find that this called the surface tension, and it is assumed tabd..
The symbolu is the interpolating parameter. The partition
function depends op.: Z=Z(u). The surfaces are allowed
*Electronic address: koibuchi@mech.ibaraki-ct.ac.jp to self-intersect.
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It should be noted that our choi@=1 represents not
only a redefinition ofw asu/a but also a choice of the unit
of length asykT/a=1. Hence, the unit ofc becomekT/a.
We can choose the unit of length gkT/a=1, because the
partition function of Eq(2) is scale invariant. The units will
be explicitly mentioned if necessary.

(a)

—_—

The specific heat is defined by (b)
Cs,=(?IN)#*log Z/ dp?,

and is practically calculated by using

2
it 2
Cs3: W((%‘(%» ) ©) FIG. 1. Basic MC processes f¢&) update ofX, a small change
of the position of a vertex, anth) update of7, a flip of a bond.
hence it corresponds to the fluctuationSaf Cubes represent vertices.

A phase transition is called theh order if the derivatives
below the —1)th order of the free energy=—logZ(x)  rations of MC. The radii of the initial spheres are fixed so
are continuous and a derivative of théh order is discon- that the sum of the resulting squared length of bonds per
tinuous. It should also be noted that a singular functionyertex, i.e., the Gaussian energy per velifebgz/N becomes
which is a function divergent somewhere in the parametealmost equal to the expected valdéie This value is obtained

space, is a discontinuous function. by the scale invariance of the partition functidgrof Eq. (2).
In fact, by letting Z(a) =31\ 'dX;exd —(aS,+uSy)],
B. Squared scalar curvature S, we have(S;) = —d(log Z2)/da(a=1). SinceZ(a) is scale in-

Here we comment o3 in Eq. (1). If the Gaussian cur- Va”"i‘g‘}’N_rf)p'aCi”&Z(l by a™*X in Z(a) we obtain Z(a)
vatureK is integrated over a compact surface, the integration_ 2L dXex —(aS+uS)], and  therefore
of K becomes a constant that depends only on the genus 8¢ 0btain(S;)=3(N—1)/2. Thus, we havgS;)/N=3(N

~3
the surface. For this reasaf,is independent of the shape of — /2N= 2: N ,
membranes. The basic MC processes are shown in Fig. 1. The posi-

However, the integration df2 can play a nontrivial role tions X of the vertices and the triangulatichare updated
in the shape transformation of membranes. In fact, the inte¥Sing the canonical MC technique. Each position and net-
gration of K2 has different values on surfaces, which areWork link is updated sequentially, with the change in connec-

different in shape, even though the surfaces have the sanil¥!ty following the fluid membrane algorithm developed by
genus. Baumgartner and H[®,10] and at the same time by Catterall

It should be noted tha®, in Eq. (1) is considered as a [19)- X is updated so thaX’=X+ 45X, where the small
discretization ofK2. To see this, let us define the deficit ChangedX is made at random in a small sphere centered at
angle s, by X. The radiusér of the small sphere is chosen to maintain

the rate of acceptanag for X update to be 08ry=<0.55.

The ér is defined by using a constant numlzeadjusted by

Gi=2m— E b (4 hand as an input parameter so that (1), where(l) is the

mean value of bond length computed at every 250 sweeps. It
at the vertexi, where ; denote the vertex angles of the should be noted thair becomes almost fixed becau$g is
triangles connected to the vertexThis &, is considered as a almost constant in the equilibrium configurations. Contrast-
discretization of the Gaussian curvati¢egor the scalar cur-  ingly, the rate of acceptanae; for the flip of bonds is un-
vatureR). In fact, it is well known that the relatio;s,  controllable. The value ofis fixed automatically depend-
=2m(2—7) is obtained by summing; over a surface of ingon the interpolating parametgrin Eq. (2); it varies with
genus 7. This is considered as a discrete version of thethe value ofS; and will be discussed in the following sec-

Gauss-Bonnet theorerfid?x\/JgK=2m(2— 7) for the com-  tion. _ _
pact surfaces of genus One MC sweep consists i trials for X update and\

By proceeding this discretization further, we can also retrials for Tupdate. Two consecutivé trials for X update and
write the right-hand side of Eq4) asA;=6—o,. ThisA; 7 update make one MC sweep.

can be interpreted as a discretizatiorkofipto a multiplica- No restrictions are imposed on the trial updates, except
tive constant because of the relatidns, =273;A;. Thus, the minimum length of bonds, which corresponds to a hard
we obtainS; in Eq. (1) from [d2x\/gK2. core between the vertices at two ends of the bonds; whereas

all the vertices that have no common bond are able to occupy
even an identical position. Practically, the trial updatesXor
and 7 in Fig. 1 are made so that the resulting lengths of
Spherical surfaces iR® are discretized with the Voronoi bonds should not be smaller than£0l), where(l) is the
triangulation[30], and they are used as the starting configu-mean value of bond length. The maximum number is not

C. Monte Carlo technique
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(a)0.8 (b)1.5 (c)2.3
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FIG. 2. Snapshots of surfaces Mf=1000 in the equilibrium configurations é) ©=0.8, (b) u=1.5, (c) u=2.3, (d) ©u=3.5, (&) u
=4.8, and(f) x=4.9. Small spheres on the surfaces are the vertices.

imposed on the coordination number, while the minimum  Figure 4a) shows the specific heﬁlsg. We find that there

coordination number should be obviously 3. are not only two peaks ai=0.4 and atx=2.3 but also a
It should be noted that the mean value of bond length inyap a1, =4 in Cs,. Since the peak g1=0.4 is very small,

the equilibrium configurations is a constant in the unit Ofwe will concentrate only on the peak at~2.3 and the aa
a/kT, which is assumed to ba/kT=1, as mentioned in at p~4 y P A=< 9ap

Sec. Il A. Thus, the minimum bond length that is the radius™ /_. .
of the hard core becomes a constant. According to our expe- Figure 4b) shows the mean square sié defined by

riences, the results of MC calculations are independent of a 1 o 1
minimum bond length if it is small enough. X2=N > (X—-X)?, X= N > X (5)
1 1
Il RESULTS
A. Snapshots ofN=1000 surfaces We find from Fig. 4b) that X? significantly depends o

Figures 2a)—2(f) are the snapshots of surfaces obtained a@nd abruptly changes ai=4, whereCs, has the gap, as
1=0.8~4.9, whereN=1000. They were obtained after shown in Fig. 4a). This suggests that there is a strong
enough MC sweeps for the equilibrations started from a
sphere as the starting configuration. These figures suggecy.
that the membrane belongs to the branched polymer phase i
2.3=u<4.8 and belongs to the crumpled phase both.at
<2.3 and atu>4.9 whenN=1000.

0.1F

B. Results of N =340 surfaces

Figures 3a) and 3b) show the rate of acceptance for 0.05
the bond flip and the enerd¥ per vertex, respectively.is
uncontrollable in MC ifS; is not contained in the Hamil-
tonian. However, if the Hamiltonian contair one can 0
controlr zin MC, as shown in Fig. @). The data denoted by

fche open(solid) circlles are obtained by increasi(decreas- FIG. 3. (a) The rate of acceptanas for bond flips andb) the
ing) _the Valu_e Of,u_ln MC Starte_d atp,:_O.S (1“‘26'7)1 The squared scalar curvature per vert8x/N. The open circles©)
starting configuration at every is the final one obtained at genote the data obtained by increasing the valye iof MC started
the previousu. 2X10° sweeps are discarded for the ther- a1, 0.3, while the solid circles®) denote the data obtained by
malization at everyu, and S; is sampled at every 500 decreasing the value gf in MC started atu=6.7. The starting
sweeps in the following 1:810" sweeps. We can see a kind configuration at eacjx was the final one obtained at the previous
of hysteresis ai =4 in Figs. 3a) and 3b). w. The unit of u is kT/a.
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FIG. 4. (a) The specific heaCs, and (b) the mean square size FIG. 5. (a) X? vs u at the vicinity of critical pointsuc(N) of the
X?. The number of vertices I =340. The units os, X?, andu first-order phase transitioib) Log-log plots of mean values of2

are kT/a)?, kT/a, andkT/a, respectively. vs N at u<u(N) (branched polymer and at u>uc(N)
(crumpled. The unit of X? is kT/a, which is identical with that
of u.

(maybe the first ordephase transition between the branched
olymer phase and the crumpled phase emerggd=at for
E:y340. P pleap g are p.(340)=4.3, u.(600)=4.4, u.(1000<N<1500)
We easily find from Fig. @) that the crumpled phase =48~5, anduc(N=2500)=5.5, some of which can be
emerges both at—0 and atu— . Hence, the model con- Viewed in Fig. %a). _
tains two phase boundaries; one of which separates the Figure 3b) ShOWSXZ just above and below.(N) vsNin
branched polymer phase and the crumpled phage-ate,  109-log scale. Thes&* are mean values obtained from the
and the other separates the branched polymer phase and #@a points obtained at the vicinity ofic(N) for N
crumpled phase ai—0. The dashed lines drawn vertically =340, 600, 1000, 1500, 2500. The values Xf obtained
in Fig. 4(b) denotes these phase boundaries. We can see théSt below uc(N) is denoted bybranched polymein the

peak ofCs_ and the gap of it just at these two phase boundigure, while those just above(N) by crumpled
aries, respectively, in Fig.(d Both of the straight lines in Fig. (b) are obtained by

Additional 6x10° MC sweeps were done ai=7 by fitting the data to Eq(6). Thus, we have
starting with the final configuration corresponding to the
symbol (O) at =7 plotted in both Figs. 3 and 4. However, Hpp=1.93+0.06, H¢,,=15.43%0.28, ()
the obtained value oK? remains unchanged. In the same
way, 6x10° sweeps were done at=6.7 by starting with whereHy, , andH,, correspond tdd at the branched poly-
the sphere of radiuR, chosen, so tha®,=3N. We find in  mer phase an#l at the crumpled phase, respectively, at the
this case that the obtained surface remains crumpled, andcinity of the critical point.
that the value oX? remains a constant value, which is iden-  The number of MC sweeps done at the vicinity of the
tical with that (@) at «=6.7 in Fig. 4b). These indicate that critical points are & 10° for N=340, 600, and 0.810°
the surface can hardly shrink even in the crumpled phase if it- 1 x 10° for N= 1000, 1500, 2500. The number of thermal-
is once stretched, and also that the surface remains crumplézhtion sweeps done in the branched polymer phase is 1
in the crumpled phase if it is once crumpled. X 107 for all values ofN, while it is quite large (5 10°, for
example at close vicinity of the critical points. After the
thermalization, time serie§S;} are sampled at every 500
sweeps, i.e., the number of sampling sweeps is 500. The
It was suggested in Figs. 3 and 4 that the phase transitiogtarting configuration of MC at eaghis the sphere of radius
between the branched polymer and one of the crumple®(N) chosen so tha®, /N=23/2.
phases is of the first order. In this subsection, we will show It should be noted that the results are almost independent
more clearly and confirm this. of the sampling sweeps. The sampling sweeps of 500 is very
Figure §a) shows thatX? discontinuously reduces %2 smaller than a correlation time, which can be estimated as
=0.5 atu=pu.(N) when u increasesX? at u<pu.(N) de- the minimum number of sweeps so that the autocorrelation
pends o, and becomes larger and larger wi¢increases. coefficient
While at > u(N), X? seems independent ™ and be-
comes constant valu?=0.5. This suggests that the value
of Hausdorff dimensioH defined by Z X?( 1) X3(7)

A(X?)=

C. First-order phase transition

XZNNZ/H 6
© 2 XE(n)P?

becomes very large at> u(N), while it remains small at
n<uc(N). The critical pointsu.(N) of the phase transition (1i41=7,+nX500, n=1,2,...)
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FIG. 6. (8 S3/N vs u at the vicinity of the first-order phase FIG. 7. (a) Cs, vs u and(b) the peaki:g‘:)‘(N) vs N in log-log
transition andb) S;(xc) (O) and the gap\S; (@) vs Nlln log-  scale. The units o€, and u are (T/a)? andkT/a, respectively.
log scale, wher&S;(u.) andAS; are defined byS;(u.) = 5[ Ssz(u«

>pet Ss(u<pme)] and AS;=Sy(p>pe) —Ss(u<pme), respec-

fively. The unit of u is KT/a., why the obtained data\S; considerably fluctuate in Fig.

6(b).
becomesA(X?)=<0.1. Nevertheless, we can see that the MC
results are almost independent of the sampling sweeps D. Continuous phase transition
[15,20,21. -
The X2 plotted in Fig. 5a), which were obtained from the 't Was suggested in Fig.(4 that the model undergoes a

surfaces oN= 1000, 2500, are fluctuated at close vicinity of Sécond-order phase transition at=2.3. Hence, we will
the critical points. It appears that thé is not well defined study this phase transition further using surfaces of lakger

there. This ill definedness will be seen alsoSpand in the ~thanN=340. 3
specific heaCSa. Figure 7a) shows the specific hea(éos3 vs w. The peak
This ill definedness oK? seems due to the noncompact valuesCg™(N) of the specific heat againt are plotted in

nature of the phase spaBé for the dynamical variablX. If ~ Fig. 7(b) in log-log scale to see Wheth@g‘j’ﬁ(N) is divergent
the variablesX are localized once at a stretched one-gr not, where 206 N<4500.

dimensional region irR® to form a branched polymer sur-  The number of MC sweeps done at the vicinity of the
face, the surface can hardly shrink to a crumpled one, bepeaks of C5 are 3x10° for N=600, 1000, 1500, and 9
3

g‘?‘“se all tlhe variablex tloc_;ateI? at th? stretchted one-l 10° for N=2500, 4500. The thermalization sweeps done at
imensional region cannot simultaneously move to a small, .\ “are 1% 107 for N=600, 1000, 1500 and 410" for

region in R® within finite MC sweeps. On the contrary, al- N=2500, 4500. The sampling sweeps and the starting con-

most all the surfaces in the branched polymer phase Cafﬂgurations of MC are the same as those in the MC for the
eventually stretch out and change into branched polymer SUk

L irst-order phase transition presented in Sec. Ill C.
faces after many thermalization sweeps, even when the sur
faces are crumpled at the beginning.

Figure §a) shows thaS;/N, which is the internal energy
per one vertex, has a gap at the critical poiatgN) when
N=600. This also suggests that the branched polymer phase
and the crumpled phase are separated by a first-order phag@en N=1500, we find that the fluctuation &, is diver-
transition. The continuous behavior seenSp of N=340  gent atN—, whereo is a critical exponent of the phase
seems due to the size effect, that is, the size of the surface igansition. This suggests that the model undergoes a second-
too small for low-frequency mode®r excitation in the  order phase transition accompanied by the fluctuatioB,of

fluctuations ofS,. It also appears that th8; is not well if we think that the largest three data 6E™ shown in Fig.
defined at the critical points, 8 is not, whenN=1000. 7(b) can be fitted to Eq(8), we have

A scaling property of the gap &; at N— is unclear in
Fig. 6(a), becauses; are divided byN in Fig. 6(@). Hence,
we showSs(ze) (O) andAS, (@) vs N in Fig. 6b) in o=0.0878-0.0087. ©
log-log scale, wher&;(u.) is defined by usings; just be-
low and above uc(N), so that Sy(ue)=3[Ss(u> ue) The solid line in Fig. o) is drawn by using the result in Eq.
+S3(u<ume)], andAS; is the gap ofS; at u (N) defined  (9). This indicates that the phase transition is very weak, but
by AS;=S5(u> o) — Ss(m< o). it is a second-order one.

We consider that the phase transition is characterized also Hence, it is possible to consider that there is a fixed point
by a discontinuity ofS;, because we can expect tha;  of the 8 function of the model at finite., where the corre-
#0 atN—oo from Fig. §b). It should be noted that it is very lation length is expected to be divergent, so that all physical
hard to obtairS; precisely near the critical point becau8g  quantities become independent of the discrete lattice struc-
is not well defined at the critical point. This is the reasonture of the model.

" If we consider thacg“;"(N) scales according to

Cg;aXN NU, (8)
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However, it is also possible thatgjx saturates aiN goes a first-order phase transition separating the branched

>4500, which are larger than those plotted in Figb)7 ~ Polymer phase and the crumpled phasg.ate. Moreover,
Therefore, it is not conclusive that the phase transition is ofhe€ model undergoes a secottdr higher) order phase tran-
second order. sition between the branched polymer phase and the crumpled
Nevertheless, the existence of the peakCig, suggests phase aju—0. -
that the model undergoes a phase transition separating the If the phase transition between the branched polymer
branched polymer phase and the crumpled phage-a0. It phase and the crumpled phaseuat-0 is second order, it is
should be noted that this phase transition separates also ifharacterized by the divergence of the specific l@at at
ternally random and flat configurations, which are characterthe critical pointu(=2.3). X? continuously changes at this
ized by S;#0 andS;=0, respectively. critical point, whether the order of the phase transition is
second or higher. The surfaces are also considered to be in-
ternally flat atu> u. where the coordination numbeos at
almost all vertices become 6, while the surfaces become in-

We studied the phase transitions in the model of two-
P ternally at random at.<< . where theg; are not always 6.

IV. SUMMARY AND CONCLUSION

dimensional surface that was first constructed by Baillie

et al. for an interpolation between the model of fluid mem-
branes and the model of crystalline membranes. The Hamif

tonian of the model is given b$= S, + uS;, whereS,; is the

The first-order phase transition is characterized by the dis-
ontinuity of X?, hence by the Hausdorff dimensid#; H
=2 in the branched polymer phase just belp&éﬁt, while

Gaussian energy arf} is the intrinsic squared scalar curva- H=15 in the crumple.d phase at> 1. This phgse transi-
ture energy, ang. is the parameter that interpolates the fluid tion is also characterized by a gap$g at the critical point

1st

and the crystalline models of membranes. The dynamicak;™.

variables of the model are the positions of verti¥esnd the

triangulationsZ. The results are summarized as follows:
The shape of surfaces becomes tubuiee., branched

polymep at the intermediate values @f. The model under-

It would be interesting to study the model defined by the
Hamiltonian S=S;+bS,+ uS;, where S, is the extrinsic
curvature(i.e., the bending energybecause this model con-

tains the smooth phase where the surface becomes smooth.
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